Dienstleistungen rund um den elektrischen Antrieb

Leistungs-Elektronik & Antriebe

Entwicklung – Schulung – Beratung

Versuch Haftmagnet

Untersuchung von Haftmagneten durch Messungen und numerische Simulation nach der Finite-Elemente-Methode (FEM) mit dem freien Programm *FEMM*

Version 4 vom 1. 6. 2015 Erstellt von V. Bosch

Inhaltsverzeichnis

Inhaltsverzeichnis	2
1. Installation und Start der Software	3
2. Modellierung der Geometrie	5
3. Zuordung der Materialien bzw. Materialeigenschaften	6
4. Berandung der Simulation zeichnen	9
5. Werkstoff-Zuweisung	10
6. Randbedingungen setzen	12
7. Vernetzung und Berechnung	13
8. Ergebnisse anzeigen - Postprozessor	14
9. Verschieben von Objekten	17

1.Installation und Start der Software

<complex-block>

Anlegen eines neuen Projekts zur Berechnung eines Magnetfeldes

Eigenschaften der Magnetfeld-Berechnung definieren

Darstellung der Zeichenebene

-> Grid -> Set Grid

E File	e Edit	View	Problem	Grid	peration	Properties
	€ :[• 🖊	200	~	Show Grid	C
	- 24. EA	100		ļ.,	Snap to Grid	
					Set Grid	

Grid Size Coordinates Rastergitter in mm *Cartesian:* Darstellung in kartesischen Koordinaten (x/y)

Grid Size		
Coordinates	Cartesian) -
.oordinates	Cartesian) -

Enter Point

x-coord

Cance

2. Modellierung der Geometrie

Eingabe des Magnets: Der Magnet wird in Seitenansicht dargestellt. Er erscheint somit als Rechteck das 10mm breit und 5mm hoch ist.

- Eckpunkte eingeben
- -> Operate on Nodes
- -> Tabulatortaste drücken: Eingabe der Koordinaten
 - Linke untere Ecke:x-coord: -5y-coord: 1Linke obere Ecke:x-coord: -5y-coord: 6Rechte obere Ecke:x-coord: 5y-coord: 6Rechte untere Ecke:x-coord: 5y-coord: 1
 - Rechts-Klick auf alle Punkte nacheinander

Leertaste drücken

In Group: 10

Die Nummer 10 wird dem Magnet zugeordnet.

-> <mark>O</mark>K

Kanten definieren: Verbindungslinien zwischen den Punkten

-> Operate on Segments

Punkt links oben mit rechter Maustaste anklicken Punkt rechts oben mit rechter Maustaste anklicken Diese Schritte mit allen vier Seiten des Rechtecks widerholen

Rechts-Klick auf alle Linien nacheinander -> Leertaste drücken

In Group: 10 -> <mark>ОК</mark>

<none></none>	-
Local element size along line:	0
Chose mesh sp automatically	acing 🔽
Hide segment ir postprocessor	^ ┌
In Group	10
ОК	Cancel

Eingabe der Eisenplatte (Rechteck, 78mm breit und 6mm hoch)

-> Eingabe der Koordinaten: -> Tabulatortaste drücken
 Linke obere Ecke: x-coord: -39 y-coord: 0
 Linke untere Ecke: x-coord: -39 y-coord: -6
 Rechte obere Ecke: x-coord: 39 y-coord: -6
 Rechte untere Ecke: x-coord: 39 y-coord: 0
 Die Punkte der Gruppe 20 zuweisen
 Verbindungslinien, wie oben
 Die Linien der Gruppe 20 zuweisen

3. Zuordung der Materialien bzw. Materialeigenschaften

Magnetwerkstoff Y28 modellieren

Marriel	Br		Br HcB		HcJ		(BH) max	
Material	mT	KG	KA/m	KOe	KA/m	KOe	Kj/m3	MGOe
Y8T	200~235	2.0~2.35	125~160	1.57~2.01	210~280	2.64~3.52	6.5~9.5	0.8~1.2
Y20	320~380	3.2~3.8	135~190	1.70~2.38	140~195	1.76~2.45	18.0~22.0	2.3~2.8
Y22H	310~360	3.1~3.6	220~2500	2.77~3.14	280~320	3.52~4.02	20.0~24.0	2.5~3.0
Y23	320~370	3.2~3.7	170~190	2.14~2.38	190~230	2.39~2.89	20.0~25.5	2.5~3.2
Y25	360~400	3.6~4.0	135~170	1.70~2.14	140~200	1.76~2.51	22.5~28.0	2.8~3.5
Y26H	360~390	3.6~3.9	220~250	2.77~3.14	225~255	2.83~3.21	23.0~28.0	2.9~3.5
Y27H	370~400	3.7~4.0	205~250	2.58~3.14	210~255	2.64~3.21	25.0~29.0	3.1~3.7
Y28	370~400	3.7~4.0	175~210	2.20~2.64	180~220	2.26~2.77	26.0~30.0	3.3~3.8
Y30	370~400	3.7~4.0	175~210	2.20~2.64	180~220	2.26~2.77	26.0~30.0	3.3~3.8
Y30H-1	380~400	3.8~4.0	230~275	2.89~3.46	235~290	2.95~3.65	27.0~32.0	3.4~4.1
Y30H-2	395~415	3.95~4.15	275~300	3.46~3.77	310~335	3.90~4.21	28.5~32.5	3.5~4.0

Quellen: http://www.magnets.com.cn/in2ai.htm und http://www.chinamagnets.com/Ferrite_Magnet.html

Werte der Magnetisierungskurve B(H), also Flussdichte B (in Tesla) über der Feldstärke H (in A/m) aus dem Diagramm entnehmen, z.B. mittels des Programms g3data (http://www.frantz.fi/software/g3data.php)

Kurve in den Ursprung verschieben, indem von jedem
Feldstärke-Wert (Spalte A) der erste Wert (Zelle A4)
subtrahiert wird:

1	Y2	8 Entmagnetisier
2	Feldstärke	Flussdichte
3	H (A/m)	В (Т)
4	-202241,91	0,00010742
5	-202203,931	0,03200277
6	-202172,858	0,06043124
7	-202144,547	0,09163321
8	-202112,783	0,12976895
9	-198678,154	0,15124944
10	-192866,768	0,16578728
11	-174963,748	0,1885977
12	-155268,147	0,21140102
13	-132438,292	0,23696542
14	-108714,219	0,2646064
15	8/15/11 2007	0 20155222

L			• •
	А	В	С
1		Y28 Entma	agnetisierungski
2	Feldstärke	H verschoben	Flussdichte
3	H (A/m)	H (A/m)	В (Т)
4	-202241,9	=A4-\$A\$4	0,00010742
5	-202203,931	37,978404	0,03200277
6	-202172,858	69,051644	0,06043124
7	-202144,547	97,362819	0,09163321
8	-202112,783	129,126575	0,12976895
9	-198678,154	3563,755383	0,15124944
10	-192866,768	9375,141802	0,16578728
4.4	474062 740	17170 46471	0 1005077

		А	В	С				
1	L		Y28 Entma	agnetisierungs	ĸu			
2	2	Feldstärke	H verschoben	Flussdichte				
3	3	H (A/m)	H (A/m)	в (Т)				
4	1	-202241,91	0	0,00010742				
5	5	-202203,931	37,978404	0,03200277				
6	5	-202172,858	69,051644	0,06043124	١			
7	7	-202144,547	97,362819	0,09163321	1			
8	3	-202112,783	129,126575	0,12976895				
9	9	-198678,154	3563,755383	0,15124944				
1	0	-192866,768	9375,141802	0,16578728				
1	1	-174963,748	27278,16173	0,1885977	/			
1	2	-155268,147	46973,76235	0,21140102	1			
1	3	-132438,292	69803,61712	0,2369654				
1	4	-108714.219	93527.6907	0.2646964				

Das Dezimaltrennzeichen Komma durch einen Punkt ersetzen. Die Textdatei unter dem Namen **Y28.dat** abspeichern

🗐 Y28	dat - Editor			
<u>D</u> atei	<u>B</u> earbeiten	F <u>o</u> rmat	<u>A</u> nsicht	2
0		0.00	0107425	5
37.97	8404	0.03	2002774	1
69.05	1644	0.06	0431237	7
97.36	52819	0.09	163321	
129.1	.26575	0.12	9768953	3
3563.	755383	0.15	124944	
9375.	141802	0.16	5787278	3
27278	3.16173	0.18	8597699)
46973	3.76235	0.21	1401018	3
69803	3.61712	0.23	6965417	
93527	.6907	0.26	4606396	5

-> Properties	-> Materials	Property Definition	Block Property	x
		Add Property Delete Property Modify Property	Name Y28 B+H Curve Nonlinear B+H Curve Linear Material Properties Relative μ_x ϕ_{hx} , deg 0 ϕ_{hy} , deg 0 Nonlinear Material Properties Edit B+H Curve ϕ_{hmax} , deg	
			Coerdivity Electrical Conductivity H _c , A/m 192500 Source Current Density σ 1. MA/m ^2 0	
-> Add Proper	тty		Special Attributes: Lamination & Wire Type	
Name:	Y28		Not laminated or stranded	[
B-H-Curve: Coercivity H₅:	Nonlinear B-H 192500 (Mitte	Lam thickness, mm 0 Lam fill factor 1 Number of strands 0 Strand dia, mm 0 OK Cancel		
	obig	jer werkstofftabelle)		

-> Edit B-H Curve	B-H Curve Data
	B-H Curve for: Y28 B. Tesla H. Amp/m
	• •
	Plot B-H Curve
	Log Plot B-H Curve
	Read B-H points from text file
	OK Cancel

Weitere Werkstoffe aus Bibliothek auswählen

-> Properties -> Materials Library Links-Klick-> Air In rechtes Teilfenster hinüberziehen Ordner Soft Magnteic Materials öffnen Links-Klick-> Pure Iron in rechtes Teilfenster hinüberziehen -> OK

4. Berandung der Simulation zeichnen

Kreis mit Radius 80mm um den Ursprung des Koordinatensystems legen -> Operate on Nodes $\boxed{\ }$ Tabulator-Taste Koordinaten x=-80 y=0 und x=80 y=0 eingeben Rechts-Klick auf beide Knoten -> Leertaste In Group 1000

-> Operate on arc segments Links-Klick auf rechten Punkt (80/0), anschließend Links-Klick auf linken Punkt (-80/0) Winkel des Segments in Winkelgrad eingeben: *Arc Angle:* 180 -> OK

Arc Angle	180	
Max. segment, Degrees	1	
Boundary cond.	<none></none>	•
	OK	Cancel

Links-Klick auf linken Punkt (80/0), anschließend Links-Klick auf rechten Punkt (-80/0) -> OK

Rechts-Klick auf beide Segmente -> Leertaste In Group: 1000

5. Werkstoff-Zuweisung

-> Operate on block labels

Magnet

Links-Klick in die Mitte des Magnets Rechts-Klick auf den soeben erzeugten Knoten

-> Leertaste

Block type: Magntization Direction: In Group:

-> OK

-> Y28

90

10

opercies for	
Block type 🤇	Y28
Mesh size	0
✓ Let Trian	gle choose Mesh Size
In Circuit	<none></none>
Number of Turns	1
Magnetizatio Direction	n 90
In Group	10
🗖 Block labe	el located in an external region
🗌 Set as de	fault block label

Eisenplatte

Links-Klick in die Mitte der Eisenplatte Rechts-Klick auf den soeben erzeugten Knoten

-> Leertaste

Block type: Pure Iron *In Group:* 20

Block type (Pure Iron
Mesh size	0
Let Triangle	choose Mesh Size
In Circuit	<none></none>
Numb <mark>er of</mark> Turns	1
Magnetization Direction	0
In Group	20
🗖 Block label l	ocated in an external region
Set as defa	ult block label

Erachaic		<u>.</u>									- b	-i	e · ·								 · · · <u>·</u>
Ergebnis:		1	:	1	1	1	1	1	1	1	1			1	1	1	1	1	1	1	:
		• •		÷.				1	1121			. a H	ure Iron	1.1.1	1	100	-	÷	11		 111
	1	•																			 e

Hintergrund-Material festlegen

Links-Klick innerhalb des Kreises, aber außerhalb von Eisen oder Magnet Rechts-Klick auf den soeben erzeugten Knoten

-> Leertaste

Block type:	Air
In Group:	1000

->

Hide arc in postprocessor

In Group

1000

OK

Cancel

6. Randbedingungen setzen

Name:	ABC	Boundary Property
BC Type:	Mixed	Name ABC OK
c₀ coefficie c₁ coefficie	nt: 1/(uo*80*mm) nt: 0	BC Type Mixed Cancel Small skin depth parameters Prescribed A parameters
-> <mark>OK</mark>		μ, relative 0 A ₀ 0 σ, MS/m 0 A ₁ 0
ABC: asym	otodic boundary	$\begin{bmatrix} Mixed BC parameters \\ c_0 coefficient 1/(uo*80*mm)) \\ c_1 coefficient 0 \end{bmatrix} \begin{bmatrix} A_2 \\ \phi \end{bmatrix} $
80*mm = F	adius des Kreises	
-> <mark>OK</mark>		
perate on arc Rechts-Klic	segments 🗔 k auf beide Kreissegr	mente -> Leertaste
Boundaray	cond.: ABC	Arc segment properties
		Max. segment, 1 Degrees

7. Vernetzung und Berechnung

Venetzung starten -> Run mesh generator

Ergebnis:

Berechnung, Solver starten -> Run analysis

I TRI I TIMA EL CAMA TIRO EL COL	<u>♦ ~ × </u> ©	

8. Ergebnisse anzeigen - Postprozessor

Aus der Farbskala kann eine Flussdichte von ca. 0,16 T zwischen Magnet und Eisenplatte abgelesen werden

Ermittlung der Haltkraft

Die Kraft auf den Magnet wirkt in der Senkrechten (y), nach unten (negatives Vorzeichen). Sie beträgt 1,96715 N bei einer Magnet- und Eisenlänge von 20mm (in die Zeichenebene hinein) und unter Vernachlässigung der axialen Streuung.

Integral Result	
x-component: 0.000480438 N y-component: -1.96715 N	
	ОК

X

-

Cancel

Darstellung der magnetischen Flussdichte im Luftspalt

Linie erzeugen, entlang der die Flussdichte angezeigt werden soll: Geomentrie-Editor öffenen (Hauptmenu)

Eckpunkte eingeben:

-> Operate on Nodes

-> Tabulatortaste drücken: Eingabe der Koordinaten

-coord	5	x-c	coord	-5	
-coord	0.5	y-c	oord	0.5	

Rechts-Klick auf beide Punkte -> Leertaste -> In Group 100 -> OK

Verbindungslinie zwischen den Punkten ziehen:

-> Operate on Segments beide Punkte anklicken: Rechts-Klick auf Linie -> Leertaste -> In Group 100 -> OK

In den Postprozessor wechseln: '🐶

Operate on Contours J

Beide Endpunkte der Linie anklicken:

Menue -> Plot X-Y

(Magnitude of flux density)	-
per of points in plot –	
	ОК
	Cancel
ite data to text file	
ormatting	
ite data to text file	

Eine Linie kann durch Drücken der Shift-Taste nach dem Anklicken von Anfangsund Endpunkt in ein Kreissgment verwandelt werden. Die Reihenfolge von Anfangs- und Endpunkt gibt die Richtung des Sements vor, der gewünschte Winkel wird in die Eingabemaske eingetragen.

Dr.-Ing. Volker Bosch · Humboldtstraße 21 · 70771 Leinfelden-Echterdingen eMail: info@dr-bosch.com · Tel: (0711)713967 · mobil: 0170 1243186 · Web: www.dr-bosch.com

9. Verschieben von Objekten

Soll die Kraft für einen anderen Abstand zwischen Magnet und Eisenplatte berechnet werden, so muss der Magnet verschoben werden.

Ergebnis:

